[go: up one dir, main page]

login
Triangle of coefficients in expansion of (14 + x)^n.
4

%I #17 Sep 08 2022 08:45:38

%S 1,14,1,196,28,1,2744,588,42,1,38416,10976,1176,56,1,537824,192080,

%T 27440,1960,70,1,7529536,3226944,576240,54880,2940,84,1,105413504,

%U 52706752,11294304,1344560,96040,4116,98,1,1475789056,843308032,210827008,30118144,2689120,153664,5488,112,1

%N Triangle of coefficients in expansion of (14 + x)^n.

%C Triangle T(n,k), read by rows, given by [14, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

%H G. C. Greubel, <a href="/A147716/b147716.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n,k) = binomial(n,k) * 14^(n-k).

%F G.f.: 1/(1 - 14*x - x*y). - _R. J. Mathar_, Aug 12 2015

%F Sum_{k=0..n} T(n, k) = 15^n = A001024(n). - _G. C. Greubel_, May 15 2021

%e Triangle begins :

%e 1;

%e 14, 1;

%e 196, 28, 1;

%e 2744, 588, 42, 1;

%e 38416, 10976, 1176, 56, 1;

%e 537824, 192080, 27440, 1960, 70, 1;

%t With[{m=8}, CoefficientList[CoefficientList[Series[1/(1-14*x-x*y), {x, 0, m}, {y, 0, m}], x], y]]//Flatten (* _Georg Fischer_, Feb 17 2020 *)

%o (Magma) [14^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 15 2021

%o (Sage) flatten([[14^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 15 2021

%Y Cf. A001024, A023531, A130595.

%Y Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), A038243 (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), this sequence (q=14), A027467 (q=15).

%K easy,nonn,tabl

%O 0,2

%A _Philippe Deléham_, Nov 11 2008

%E a(36) corrected by _Georg Fischer_, Feb 17 2020