[go: up one dir, main page]

login
A147310
A golden mean based polynomials set that behaves like an even powered Pascal triangle: p(x,n) = (x - phi)^floor(n/2)*(x + phi)^floor(n/2).
0
1, 1, 1, 0, -1, 1, 0, -1, 1, 0, -2, 0, 1, 1, 0, -2, 0, 1, 1, 0, -3, 0, 3, 0, -1, 1, 0, -3, 0, 3, 0, -1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1
OFFSET
0,11
FORMULA
p(x,n)=(x - GoldenRatio)^Floor[n/2]*(x + GoldenRatio)^Floor[n/2]; t(n,m)=GoldenRatio^((-m + 1))*Reverse(Coefficients(p(x,n))).
EXAMPLE
{1}, {1}, {1, 0, -1}, {1, 0, -1}, {1, 0, -2, 0, 1}, {1, 0, -2, 0, 1}, {1, 0, -3, 0, 3, 0, -1}, {1, 0, -3, 0, 3, 0, -1}, {1, 0, -4, 0, 6, 0, -4, 0, 1}, {1, 0, -4, 0, 6, 0, -4, 0, 1}, {1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1}
MATHEMATICA
Clear[p, x, n]; p[x_, n_] = (x - GoldenRatio)^Floor[n/2]*(x + GoldenRatio)^Floor[n/2] a = Table[Reverse[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}]; Flatten[%]; b = Table[a[[n]][[m]]*GoldenRatio^((-m + 1)), {n, 1, Length[a]}, {m, 1, Length[a[[n]]]}]; Flatten[b]
CROSSREFS
Sequence in context: A281271 A284319 A281272 * A025886 A117355 A319571
KEYWORD
tabf,sign,more,uned
AUTHOR
Roger L. Bagula, Nov 05 2008
STATUS
approved