[go: up one dir, main page]

login
A145951
a(n) = floor(d*Pi*n) where d is the initial digit of the fractional part of Pi*n.
2
3, 12, 37, 62, 109, 150, 197, 25, 56, 125, 172, 226, 326, 395, 47, 100, 213, 282, 358, 502, 593, 69, 144, 226, 392, 490, 678, 791, 91, 188, 292, 502, 622, 854, 989, 0, 232, 358, 612, 753, 1030, 1187, 0, 276, 424, 722, 885, 1055, 1385
OFFSET
1,1
LINKS
FORMULA
a(n) = floor(A094562(n)*Pi*n).
EXAMPLE
For n=5, 5*Pi = 15.707...; take the 7 from 15.(7)07... and multiply again: 7*5*Pi = 109.955... => 109.
MAPLE
f:= proc(n) local d;
d:= floor(10*n*Pi) mod 10;
floor(d*n*Pi)
end proc:
seq(f(n), n=1..1000); # Robert Israel, Dec 25 2015
CROSSREFS
Cf. A094562.
Sequence in context: A110950 A372880 A102744 * A083215 A211958 A255610
KEYWORD
base,easy,nonn
AUTHOR
Matthew Jorgensen (matthew.a.jorgensen(AT)gmail.com), Oct 25 2008
STATUS
approved