[go: up one dir, main page]

login
A145826
Arises from critical number of finite Abelian groups.
1
7, 8, 11, 14, 19, 21, 26, 29, 34, 41, 43, 50, 55, 57, 62, 68, 75, 77, 84, 89, 91, 98, 102, 109, 117, 122, 124, 128, 131, 135, 150, 155, 161, 163, 174, 176, 183, 189, 194, 200, 206, 209, 219, 221, 226, 228, 241, 254, 258, 260, 264, 271, 273, 283, 290, 296, 302
OFFSET
1,1
LINKS
P. Erdős and H. Heilbronn, On the addition of residue classes modulo p, Acta Arith. 9 (1964), 149 - 159.
Michael Freeze, Weidong Gao and Alfred Geroldinger, The critical number of finite Abelian groups, arXiv:0810.3223 [math.NT], Oct 17, 2008.
FORMULA
a(n) = prime(n) + floor(2*(sqrt(prime(n)+2))) + 1, where prime(n) = n-th prime = A000040(n).
a(n) >= A000006(n) + A008864(n). - R. J. Mathar, Jan 05 2009
EXAMPLE
a(10) = prime(10) + floor(2*sqrt(prime(10)+2)) + 1 = 29 + floor(2*sqrt(29+2)) + 1 = 29 + floor(2*5.56776436) + 1 = 29 + floor(11.1355287) + 1 = 29 + 11 + 1 = 41.
MAPLE
map(t -> t + floor(2*sqrt(t+2))+1, [seq(ithprime(i), i=1..100)]); # Robert Israel, Feb 02 2016
MATHEMATICA
Table[Prime[n] + Floor[2 (Sqrt[Prime[n] + 2])] + 1, {n, 60}] (* Vincenzo Librandi, Feb 02 2016 *)
PROG
(PARI) a(n) = prime(n) + floor(2*(sqrt(prime(n)+2))) + 1; \\ Michel Marcus, Feb 01 2016
(Magma) [NthPrime(n)+Floor(2*(Sqrt(NthPrime(n)+2)))+1: n in [1..80]]; // Vincenzo Librandi, Feb 02 2016
CROSSREFS
Cf. A000040.
Sequence in context: A309592 A090385 A350694 * A102963 A117619 A226977
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 20 2008
EXTENSIONS
More terms from R. J. Mathar, Jan 05 2009
STATUS
approved