[go: up one dir, main page]

login
A145766
Partial sums of A020988.
2
0, 2, 12, 54, 224, 906, 3636, 14558, 58248, 233010, 932060, 3728262, 14913072, 59652314, 238609284, 954437166, 3817748696, 15270994818, 61083979308, 244335917270, 977343669120, 3909374676522, 15637498706132, 62549994824574
OFFSET
0,2
LINKS
Hacène Belbachir and El-Mehdi Mehiri, Enumerating moves in the optimal solution of the Tower of Hanoi, arXiv:2210.08657 [math.CO], 2022.
FORMULA
a(n) = Sum_{i=0..n} A020988(i). a(n+1)-a(n)=A020988(n+1).
a(n) = 2*(4^(n+1)-3n-4)/9 = 2*A014825(n). - R. J. Mathar, Oct 21 2008
G.f.: 2*x/((1-x)^2*(1-4*x)). [Colin Barker, Jan 11 2012]
a(n) = 6*a(n-1)-9*a(n-2)+4*a(n-3), for n>2, with {a(k)}={0,2,12}, k=0,1,2. - L. Edson Jeffery, Mar 01 2012
MATHEMATICA
lst={}; s=0; Do[s+=(s+=n+s); AppendTo[lst, s], {n, 0, 5!}]; lst
Accumulate[LinearRecurrence[{5, -4}, {0, 2}, 30]] (* or *) LinearRecurrence[ {6, -9, 4}, {0, 2, 12}, 30] (* Harvey P. Dale, Sep 25 2013 *)
CROSSREFS
Sequence in context: A006738 A212697 A111642 * A181765 A198150 A122676
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by R. J. Mathar, Oct 21 2008
STATUS
approved