NOTES ON SEQUENCES A145502 - A145510
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Let « > 2 and define a sequence {a(n)},>1 by setting a(1) = z — 1 and for
n > 1 setting
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The dependence of a(n) on z is suppressed for notational convenience. It is easy
to verify that a(n) satisfies the recurrence equation a(n+1) = a(n)? + 2a(n) —2
with the initial condition a(1) = z — 1. Sequences A145502 through A145510
correspond to the cases x = 3 through x = 11 respectively.

A product expansion

These sequences can be used to give rapidly converging product expansions
to evaluate quadratic irrationalities. We shall prove the following identity, valid

forx > 2:
+1 b 1
— = <1+ > 1)

This result follows immediately on taking the limit in the finite product expan-
sion
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We give an inductive proof of this latter identity. Let P(n) denote the rhs of (2),
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The initial value is
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We shall prove P(n) = P(0) is a constant, independent of n, by proving that
the ratio P(n + 1)/P(n) = 1. The proof makes repeated use of the recurrence
equation a(n + 1) = a(n)? + 2a(n) — 2.



From the definition (3) of P(n) we find
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Hence by induction P(n) = P(0) = (z + 1)/ (V&2 — 4) is true for all n and (1)
is proved.

A seond product expansion

In an exactly similar manner to the above we can establish the product ex-
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(Cantor [2], but which apparently dates back to Euler [1]) and its finite coun-
terpart
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Related sequences

Put b(n) = a(n) + 1. The sequence b(n) satisifes the recurrence b(n + 1) =
b(n)? — 2, with the initial condition b(1) = 2. Currently in the database are the
sequences A001566 (z = 3), A003010 (= = 4), A003487 (x = 5) and A003423
(x = 6).

Since




identity (1) when expressed in terms of the b-sequences takes the form
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For example, when = = 4 we have
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where 4,14,194,37634, ... is the Lucas-Lehmer sequence A003010.

Identity (4) when expressed in terms of the b-sequences takes the form
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For example, when = = 3 we have
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where 3,7, 47,2207, ... is A001566.

Put ¢(n) = 1(a(n) 4+ 1). The sequence c(n) satisifes the recurrence c(n + 1) =
2c(n)? —1, with the initial condition ¢(1) = #/2 = X. Currently in the database
are the sequences A002812 (X = 2), A001601 (X = 3), A005828 (X = 4) and
A084765 (X = 5). The product identities (1) and (4) for these sequences become
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and
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For further product expansion results see A209010.
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