[go: up one dir, main page]

login
A145218
a(n) is the self-convolution series of the sum of 5th powers of the first n natural numbers.
2
1, 64, 1510, 17600, 130835, 713216, 3098604, 11320320, 36074325, 102925120, 268038706, 646519744, 1460878055, 3120396800, 6346379480, 12363588096, 23184837609, 42023883840, 73881649150, 126362703040, 210792998011, 343726413824, 548946959300, 860095808000
OFFSET
1,2
REFERENCES
A. Umar, B. Yushau and B. M. Ghandi, (2006), "Patterns in convolution of two series", in Stewart, S. M., Olearski, J. E. and Thompson, D. (Eds), Proceedings of the Second Annual Conference for Middle East Teachers of Science, Mathematics and Computing (pp. 95-101). METSMaC: Abu Dhabi.
A. Umar, B. Yushau and B. M. Ghandi, "Convolution of two series", Australian Senior Maths. Journal, 21(2) (2007), 6-11.
LINKS
C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 2. - N. J. A. Sloane, Mar 23 2014
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
a(n) = C(n+2, 3)*(n^8 + 8*n^7 + 29*n^6 + 62*n^5 + 86*n^4 + 80*n^3 + 28*n^2 - 24*n + 192)/462.
G.f.: x*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1)^2/(x-1)^12. [Colin Barker, Jul 08 2012]
EXAMPLE
a(3) = 1510 because 1(3^5)+(2^5)(2^5)+(3^5)1= 1510
MAPLE
f:=n->(n^11-22*n^5+231*n^3-210*n)/2772;
[seq(f(n), n=0..50)]; # N. J. A. Sloane, Mar 23 2014
MATHEMATICA
CoefficientList[Series[(x^4 + 26 x^3 + 66 x^2 + 26 x + 1)^2/(x - 1)^12, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
PROG
(Magma) [Binomial(n+2, 3)*(n^8+8*n^7+29*n^6+62*n^5+86*n^4 +80*n^3+28*n^2-24*n+192)/462: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
CROSSREFS
a(n)=Conv(A000539, A000539)
Sequence in context: A239442 A240930 A208313 * A282526 A014794 A224282
KEYWORD
nonn,easy
AUTHOR
Abdullahi Umar, Oct 05 2008
STATUS
approved