OFFSET
0,1
COMMENTS
a(0)=3 is the smallest integer generating an increasing sequence of the form a(n)=a(n-1)^2-a(n-1)-1.
Conjecture: A130282 and this sequence are disjoint. If this is true, for n >= 1, a(n+1) is the smallest m such that (m^2-1) / (a(n)^2-1) + 1 is a square. - Jianing Song, Mar 19 2022
FORMULA
a(n) = a(n-1)^2-a(n-1)-1, a(0)=3.
a(n) ~ c^(2^n), where c = 2.07259396780115004655284076205241023281287049774423620992171834046728756... . - Vaclav Kotesovec, May 06 2015
MATHEMATICA
a = {3}; k = 3; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
PROG
(PARI) a(n, s=3)=for(i=1, n, s=s^2-s-1); s \\ M. F. Hasler, Oct 06 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Sep 20 2008
EXTENSIONS
Edited by M. F. Hasler, Oct 06 2014
STATUS
approved