[go: up one dir, main page]

login
A144485
a(n) = (3n + 2)*binomial(3n + 1,n).
2
2, 20, 168, 1320, 10010, 74256, 542640, 3922512, 28120950, 200300100, 1419269280, 10013421600, 70394353848, 493362138080, 3448674255840, 24051721745568, 167405449649550, 1163116182943260, 8068463611408200, 55891260077406600
OFFSET
0,1
LINKS
O. Egecioglu, T. Redmond, C. Ryavec, Almost product evaluation of Hankel Determinants, arXiv:0704.3398.
FORMULA
a(n) = (3n+2)*A045721(n). - R. J. Mathar, Feb 01 2014
a(n) = 2*A090763(n). - Alois P. Heinz, Feb 01 2014
MAPLE
a:= proc(n) option remember; `if`(n=0, 2,
3*(3*n+1)*(3*n+2)*a(n-1)/(2*n*(2*n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 01 2014
MATHEMATICA
a[k_] = (3k + 2)Binomial[3k + 1, k]; Table[a[k], {k, 0, 30}]
PROG
(Magma) [(3*n+2)*Binomial(3*n+1, n): n in [0..20]]; // Vincenzo Librandi, Feb 14 2014
CROSSREFS
Sequence in context: A093130 A043029 A164944 * A115489 A367939 A105493
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Oct 12 2008
STATUS
approved