OFFSET
0,3
COMMENTS
Integers of form m*(m+5)/6 (nonnegative values of m are listed in A032766). - Bruno Berselli, Jul 18 2016
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6). - Jaume Oliver Lafont, Jan 21 2009
a(n) = (-3 + 2*(-1)^n*n + 3*(-1)^n + 6*n^2 + 18*n)/16. - Alexander R. Povolotsky, Jan 27 2009
a(n) = A001318(n+1) - 1. - Peter Bala, Mar 22 2009
G.f.: x*(1 + 3*x - x^3)/((1 + x)^2*(1 - x)^3). - Jaume Oliver Lafont, Aug 31 2009
a(n) = Sum_{i=1..n+3} numerator(i/2) - denominator(i/2). - Wesley Ivan Hurt, Feb 26 2017
Sum_{n>=1} 1/a(n) = (93+10*sqrt(3)*Pi)/75. - Amiram Eldar, Sep 22 2022
MAPLE
seq(seq(((24*a+b)^2-25)/24, b=[5, 7, 11, 13, 17, 19, 23, 25]), a=0..10); # Robert Israel, Jul 15 2016
MATHEMATICA
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 4, 6, 11, 14}, 50] (* G. C. Greubel, Jul 15 2016 *)
Select[Range[0, 1500], IntegerQ[Sqrt[4!(#+1)+1]]&] (* Harvey P. Dale, Sep 20 2019 *)
PROG
(PARI) j=[]; for(n=0, 300, if((floor(sqrt(4!*(n+1) + 1))) == ceil(sqrt(4!*(n+1) + 1)), j=concat(j, n))); j
(Magma) [(-3+2*(-1)^n*n+3*(-1)^n+6*n^2+18*n)/16: n in [0..60]]; // Vincenzo Librandi, Jul 16 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander R. Povolotsky, Sep 09 2008
STATUS
approved