OFFSET
1,6
COMMENTS
a(2^k * p) = 2, where k = any positive integer and p = any odd prime.
a(p) = 1, where p = any prime.
a(2^k) = 1, where k = any positive integer.
a(n) <= A078826(n). - Reinhard Zumkeller, Sep 08 2008
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
EXAMPLE
60 in binary is 111100. The distinct primes dividing 60 are 2 (which is 10 in binary), 3 (11 in binary) and 5 (101) in binary. The string 10 does occur within 111100 like so: 111(10)0. The string 11 also occurs (multiple times) within 111100, in one way like so: (11)1100. But the string 101 does not occur in 111100. Since 2 and 3 occur within 60 (when each of these numbers is written in binary), but 5 does not, then a(60) = 2.
MATHEMATICA
f[n_] := Block[{nb = ToString@ FromDigits@ IntegerDigits[n, 2], psb = ToString@ FromDigits@ IntegerDigits[ #, 2] & /@ First@ Transpose@ FactorInteger@ n, c = 0, k = 1}, lmt = 1 + Length@ psb; While[k < lmt, If[ StringCount[nb, psb[[k]]] > 0, c++ ]; k++ ]; c]; f[1] = 0; Array[f, 105] (* Robert G. Wilson v, Sep 22 2008 *)
PROG
(Haskell)
import Data.List (intersect)
a143792 n = length $ a225243_row n `intersect` a027748_row (fromIntegral n)
-- Reinhard Zumkeller, Aug 14 2013
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Sep 01 2008
EXTENSIONS
More terms from Robert G. Wilson v, Sep 22 2008
STATUS
approved