OFFSET
1,1
COMMENTS
Also decimal expansion of Sum_{n>=1} n!!/n!. - Michel Lagneau, Dec 24 2011
Apart from the first digit, the same as A227569. - Robert G. Wilson v, Apr 09 2014
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Michael Penn, Finding the closed form for a double factorial sum, YouTube video, 2022.
Eric Weisstein's World of Mathematics, Double Factorial
Eric Weisstein's World of Mathematics, Reciprocal Multifactorial Constant
FORMULA
Equals sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)).
EXAMPLE
3.05940740534257614453947549923327861297725472633534020929971877980544281968...
MATHEMATICA
RealDigits[ Sqrt[E] + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
RealDigits[ Sum[1/n!!, {n, 0, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
RealDigits[Total[1/Range[0, 200]!!], 10, 120][[1]] (* Harvey P. Dale, Apr 10 2022 *)
PROG
(PARI) default(realprecision, 100); exp(1/2)*(1 + sqrt(Pi/2)*(1-erfc(1/sqrt(2) ))) \\ G. C. Greubel, Mar 27 2019
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2) )); // G. C. Greubel, Mar 27 2019
(Sage) numerical_approx(exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=100) # G. C. Greubel, Mar 27 2019
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Aug 04 2008
STATUS
approved