[go: up one dir, main page]

login
A141319
INVERTi transform of A141318.
1
2, 3, 8, 46, 252, 1558, 9800, 64115, 428546, 2921527, 20220128, 141746372, 1004278856, 7180301580, 51739691584, 375370204876, 2739615168344, 20100885190508, 148179065429664, 1096966770610372, 8151826588836472, 60787793832205004, 454719634089674432
OFFSET
1,1
COMMENTS
Number of generators of degree n of the primitive Lie algebra of the Hopf algebra of 2-colored planar binary trees.
MAPLE
with(numtheory):
b:= proc(n) option remember;
`if`(n=0, 1, add(add((2^d)*binomial(2*d-2, d-1),
d=divisors(j)) *b(n-j), j=1..n)/n)
end:
a:= proc(n) option remember;
`if`(n<1, -1, -add(a(n-i) *b(i), i=1..n))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jan 27 2012
MATHEMATICA
b[n_] := b[n] = If[n==0, 1, Sum[Sum[2^d*Binomial[2*d-2, d-1], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; a[n_] := a[n] = If[n<1, -1, -Sum[a[n-i]* b[i], {i, 1, n}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A013208 A094370 A066084 * A369602 A001289 A103045
KEYWORD
nonn
AUTHOR
Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008
STATUS
approved