[go: up one dir, main page]

login
A141197
a(n) = the number of divisors of n that are each one less than a power of a prime.
5
1, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 6, 1, 3, 3, 5, 1, 5, 1, 4, 3, 3, 1, 8, 1, 3, 2, 5, 1, 7, 2, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 6, 1, 4, 3, 3, 1, 10, 2, 3, 2, 5, 1, 5, 1, 6, 2, 3, 1, 10, 1, 3, 4, 5, 1, 6, 1, 3, 2, 5, 1, 11, 1, 2, 3, 3, 2, 6, 1, 8, 2, 3, 1, 9, 1, 2, 2, 6, 1, 8, 2, 4, 3, 2, 1, 11, 1, 3, 2, 5, 1, 5, 1
OFFSET
1,2
COMMENTS
A067513(n) <= a(n) <= A000005(n). [From Reinhard Zumkeller, Oct 06 2008]
a(A185208(n)) = 1. - Reinhard Zumkeller, Nov 01 2012
LINKS
FORMULA
a(n) = sum (A010055(A027750(n,k)): k=1..A000005(n)). - Reinhard Zumkeller, Nov 01 2012
EXAMPLE
The divisors of 9 are 1,3,9. 1 is one less than 2, a power of a prime. 3 is one less than 4, a power of a prime. And 9 is one less than 10, not a power of a prime. There are therefore 2 such divisors that are each one less than a power of a prime. So a(9)=2.
MATHEMATICA
a[n_] := Select[Divisors[n], PrimeNu[# + 1] == 1 &] // Length; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 17 2013 *)
Table[DivisorSum[n, 1 &, PrimePowerQ[# + 1] &], {n, 103}] (* Michael De Vlieger, Aug 29 2017 *)
PROG
(Haskell)
a141197 = sum . map (a010055 . (+ 1)) . a027750_row
-- Reinhard Zumkeller, Nov 01 2012
CROSSREFS
Cf. A141198.
Cf. A049073.
Sequence in context: A260439 A182471 A078378 * A035207 A324829 A294618
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 12 2008
EXTENSIONS
Added more terms. - Steven Bi (chenhsi(AT)stanford.edu), Dec 22 2008
Added more terms (Terms 27 - 50). Steven Bi (chenhsi(AT)stanford.edu), Jan 09 2009
Corrected and extended by Ray Chandler, Jun 25 2009
STATUS
approved