[go: up one dir, main page]

login
A140015
Primes of the form 3x^2+455y^2.
1
3, 467, 503, 563, 647, 887, 1223, 1427, 1823, 1847, 1907, 2063, 2687, 2903, 3407, 3527, 3923, 4007, 4703, 4787, 5087, 5927, 6263, 6803, 6863, 7283, 7307, 7523, 7643, 8147, 8363, 8447, 8867, 9203, 9467, 9623, 9803, 10163, 10247, 11423, 11483
OFFSET
1,1
COMMENTS
Discriminant=-5460. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {3, 467, 503, 563, 647, 803, 887, 1067, 1223, 1343, 1403, 1427, 1823, 1847, 1907, 2063, 2183, 2603, 2687, 2747, 2903, 2987, 3407, 3527, 3587, 3743, 3923, 4007, 4163, 4247, 4343, 4367, 4703, 4787, 5087, 5123, 5183} (mod 5460).
MATHEMATICA
QuadPrimes2[3, 0, 455, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(12000) | p mod 5460 in {3, 467, 503, 563, 647, 803, 887, 1067, 1223, 1343, 1403, 1427, 1823, 1847, 1907, 2063, 2183, 2603, 2687, 2747, 2903, 2987, 3407, 3527, 3587, 3743, 3923, 4007, 4163, 4247, 4343, 4367, 4703, 4787, 5087, 5123, 5183} ]; // Vincenzo Librandi, Aug 05 2012
CROSSREFS
Sequence in context: A261004 A157587 A054702 * A342067 A203681 A195611
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved