[go: up one dir, main page]

login
A140007
Primes of the form 20x^2+20xy+71y^2.
1
71, 191, 311, 599, 719, 839, 911, 1439, 1511, 1871, 2039, 2399, 2711, 3191, 3359, 3719, 4079, 4271, 4679, 4799, 4871, 5039, 5351, 5399, 5471, 5591, 5879, 6359, 6719, 6791, 6911, 7151, 8039, 8111, 8231, 8831, 8999, 9311, 9431, 9551, 9791
OFFSET
1,1
COMMENTS
Discriminant = -5280. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {71, 119, 191, 311, 551, 599, 719, 839, 911, 1079} (mod 1320).
MATHEMATICA
QuadPrimes2[20, -20, 71, 10000] (* see A106856 *)
PROG
(Magma) [p: p in PrimesUpTo(12000) | p mod 1320 in [71, 119, 191, 311, 551, 599, 719, 839, 911, 1079]]; // Vincenzo Librandi, Aug 04 2012
CROSSREFS
Sequence in context: A142612 A295835 A139991 * A023107 A174370 A174454
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved