[go: up one dir, main page]

login
A139936
Primes of the form 3x^2+115y^2.
1
3, 127, 163, 223, 307, 463, 487, 547, 607, 823, 883, 967, 1087, 1327, 1543, 1567, 1783, 1867, 1987, 2083, 2143, 2203, 2347, 2467, 2647, 2707, 2887, 3067, 3163, 3187, 3307, 3343, 3463, 3583, 3643, 3727, 3847, 4003, 4027, 4327, 4363, 4447
OFFSET
1,1
COMMENTS
Discriminant=-1380. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {3, 127, 163, 187, 223, 307, 403, 427, 463, 487, 547, 583, 607, 703, 763, 823, 883, 967, 1087, 1243, 1267, 1327, 1363} (mod 1380).
MATHEMATICA
QuadPrimes2[3, 0, 115, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 1380 in [3, 127, 163, 187, 223, 307, 403, 427, 463, 487, 547, 583, 607, 703, 763, 823, 883, 967, 1087, 1243, 1267, 1327, 1363]]; // Vincenzo Librandi, Aug 02 2012
CROSSREFS
Sequence in context: A159319 A086154 A133122 * A221637 A142007 A339084
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved