[go: up one dir, main page]

login
A139866
Primes of the form 13x^2 + 12xy + 13y^2.
2
13, 41, 89, 97, 173, 181, 241, 257, 269, 293, 409, 433, 509, 521, 601, 661, 677, 773, 797, 829, 857, 941, 1021, 1097, 1153, 1181, 1193, 1237, 1249, 1321, 1361, 1433, 1553, 1609, 1637, 1693, 1741, 1777, 1861, 1889, 2029, 2089, 2141, 2161, 2273
OFFSET
1,1
COMMENTS
Discriminant = -532. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {13, 33, 41, 69, 89, 97, 117, 129, 145, 173, 181, 185, 241, 257, 265, 269, 293, 297, 325, 341, 369, 409, 433, 489, 493, 509, 521} (mod 532).
MATHEMATICA
Union[QuadPrimes2[13, 12, 13, 10000], QuadPrimes2[13, -12, 13, 10000]] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 532 in {13, 33, 41, 69, 89, 97, 117, 129, 145, 173, 181, 185, 241, 257, 265, 269, 293, 297, 325, 341, 369, 409, 433, 489, 493, 509, 521}]; // Vincenzo Librandi, Jul 29 2012
CROSSREFS
Sequence in context: A004624 A045473 A102083 * A026918 A123972 A167585
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved