
Why A139669(n) is not generalisable to all p = 4k + 3 where

p + 1 is not a power of 2, and a correct generalisation.

Miles Englezou

September 26, 2024

(1) The number of isomorphism classes of order 2n ·11 is not the least possible
for n ≥ 10

For 0 ≤ n ≤ 9, every group G of order 2n ·11 contains C11 as a unique Sylow subgroup. Its uniqueness
is a consequence of the Sylow theorems: let n11 be the number of Sylow 11-subgroups; then n11 divides
2n, and n11 ≡ 1 (mod 11). Because the minimum 2m such that 2m ≡ 1 (mod p) is 210, when 0 ≤ n ≤ 9
and thus 210 > 2n, n11 ≡ 1 (mod 11) only when n11 = 1. Therefore C11 is unique and normal for
0 ≤ n ≤ 9, and by the Schur-Zassenhaus theorem, every G of order 2n · 11 is a semidirect product
C11 ⋊ H, where H is an arbitrary 2-group of order 2n. The number of isomorphism classes is thus
the number of semidirect products C11 ⋊ H, which is equivalent to the number of homomorphisms
σ : H → Aut(C11) ∼= C10. (Which, since H is a 2-group and |C10| = 2 · 5, there are only two possible:
σ1, where im(σ1) ∼= H/N ∼= {e}; and σ2, where im(σ2) ∼= H/N ∼= C2.)

But when n = 10, C11 is no longer necessarily unique: n11 ≡ 1 (mod 11) is also satisfied when
n11 = 210. Consequently, there exist extra groups of order 210 ·11 isomorphic to the semidirect product
H⋊C11, where H is now unique and normal, and C11 is not. And since all semidirect products C11⋊H
will still exist, any H ⋊C11 will be additional, and the number of groups will be greater. This applies
for all n ≥ 10. (In fact we can construct one easily: E210 ⋊C11, where E210 is the elementary abelian of
order 210, with homomorphism σ : C11 → Aut(E210); |Aut(E210)| = 245 ·36 ·52 ·73 ·11 ·17 ·312 ·73 ·127,
hence C11 ⊂ Aut(E210), and im(σ) = C11, making σ injective. And since 11 is a factor in |Aut(E2n)|
for n ≥ 10 (for n! divides |Aut(E2n)| since the symmetric group Sn is a subgroup) therefore a similar
homomorphism exists for all E2n .)

(2) A139669(n) is not generalisable to all p = 4k+3 where p+1 is not a power
of 2

Since there exists such a minimum 2m for every p (Fermat’s little theorem), the number of isomorphism
classes will eventually differ for each p. For example, for p = 3, the number of isomorphism classes of
order 22 · 3 is 5 instead of 4 = A139669(2), because of the alternating group on 4 elements A4, which
is isomorphic to (C2 × C2) ⋊ C3. And for p = 31, the number of isomorphism classes is 196 instead
of 195 = A139669(5), because of the group E25 ⋊ C31, where E25 is the elementary abelian of order
25. Although these both agree with the initial comment in A139669, we can expect similar differences
for p = 19 at n = 18, p = 23 at n = 11, and more generally for p = A000040(A080148(n)) at n =
A014664(A080148(n)).

(3) A correct generalisation

For every p = 4k + 3, the number of isomorphism classes of order 2np will be the same for every such
p with a minimum 2m ≡ 1 (mod p) such that 2m > 2n. This is because counting the number of groups
reduces to counting the number of semidirect products Cp ⋊ H, which is equivalent to counting the
number of homomorphisms σ : H → Aut(Cp) ∼= Cp−1. The condition of minimum 2m ≡ 1 (mod p)
such that 2m > 2n ensures that Cp is always normal and Cp ⋊H is the only semidirect product (for
reasons stated in (1)). Crucially, since the existence of the homomorphism depends on p− 1 and not
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p, and since H is a 2-group, only the power of 2 in p− 1 determines the existence of a homomorphism.
Since for p = 4k + 3, p − 1 = 2r, with r odd, the number of homomorphisms is the same for all such
p. (See the Miles Englezou link in A376349 for a similar proof relating to another similar sequence).

(4) 1, 2, 4, 12, 42, 195, 1387, 19324, 1083472, ... are the least possible
number of groups of order 2np

For p = 4k + 3 satisfying 2m > 2n as defined above, the number of isomorphism classes for |G| = 2np
is the smallest possible. As we have established we are restricted to semidirect products Cp⋊H. Since
p = 4k + 3, 2 is the maximum power of 2 dividing p − 1. This means that for the homomorphism
σ : H → Aut(Cp) ∼= Cp−1 there are only two possible: σ1, where im(σ1) ∼= H/N ∼= {e}; and σ2, where
im(σ2) ∼= H/N ∼= C2. Let q be a prime such that 2k is the maximum power of 2 dividing q− 1, k > 1.
Hence now we may have additional homomorphisms σi for 1 < i ≤ k, where im(σi) ∼= H/N ∼= C2i .
But since |H| = 2n and every 2-group contains C2 as a subgroup, it follows that every homomorphism
that exists for p will exist for q. Since 21 is the least possible power of 2 dividing p − 1 for arbitrary
p, therefore when p = 4k + 3, the number of isomorphism classes for groups of order 2np is the least
possible.
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