[go: up one dir, main page]

login
A139502
Primes of the form x^2 + 22x*y + y^2 for x and y nonnegative.
5
241, 409, 601, 769, 1009, 1129, 1201, 1249, 1321, 1489, 1609, 1801, 2089, 2161, 2281, 2521, 2689, 3001, 3049, 3121, 3169, 3361, 3529, 3769, 3889, 4129, 4201, 4441, 4561, 4729, 4801, 4969, 5209, 5281, 5449, 5521, 5569, 5641, 5689, 5881, 6121, 6361, 6481
OFFSET
1,1
COMMENTS
Also primes of the form x^2 + 120y^2. - T. D. Noe, Apr 29 2008
Also primes of the form x^2+240y^2. See A140633. - T. D. Noe, May 19 2008
In base 12, the sequence is 181, 2X1, 421, 541, 701, 7X1, 841, 881, 921, X41, E21, 1061, 1261, 1301, 13X1, 1561, 1681, 18X1, 1921, 1981, 1X01, 1E41, 2061, 2221, 2301, 2481, 2521, 26X1, 2781, 28X1, 2941, 2X61, 3021, 3081, 31X1, 3241, 3281, 3321, 3361, 34X1, 3661, 3821, 3901, where X is 10 and E is 11. Moreover, the discriminant is 340. - Walter Kehowski, Jun 01 2008
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {1, 49} (mod 120). - T. D. Noe, Apr 29 2008
MATHEMATICA
QuadPrimes2[1, 0, 120, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(7000) | p mod 120 in {1, 49}]; // Vincenzo Librandi, Jul 28 2012
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Apr 24 2008
STATUS
approved