[go: up one dir, main page]

login
A139371
Let the binary expansion of n be n = Sum_{k} 2^{r_k}, let e(n) be the number of r_k's that are even, o(n) the number that are odd; sequence lists n such that e(n) <= o(n).
10
0, 2, 3, 6, 8, 9, 10, 11, 12, 14, 15, 18, 24, 26, 27, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 54, 56, 57, 58, 59, 60, 62, 63, 66, 72, 74, 75, 78, 90, 96, 98, 99, 102, 104, 105, 106, 107, 108, 110, 111, 114, 120, 122, 123, 126
OFFSET
1,2
COMMENTS
e(n)+o(n) = A000120(n), the binary weight of n. For e(n) = o(n) see A039004.
LINKS
MATHEMATICA
q[n_] := Module[{d = Reverse[IntegerDigits[n, 2]]}, Total@ d[[1;; -1;; 2]] <= Total@ d[[2;; -1;; 2]]]; Select[Range[0, 130], q] (* Amiram Eldar, Aug 31 2023 *)
PROG
See link in A139351 for Fortran program.
KEYWORD
nonn,base
AUTHOR
STATUS
approved