OFFSET
1,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^4)^2 * eta(q^6)^2 * eta(q^9) * eta(q^36) / (eta(q^2) * eta(q^3)^3 * eta(q^12) * eta(q^18)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139216.
a(3*n + 2) = 0. 2 * a(n) = A139213(n) unless n=0.
EXAMPLE
G.f. = q + q^3 + 3*q^4 + 3*q^6 + 8*q^7 + 7*q^9 + 18*q^10 + 15*q^12 + 38*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[(1/2) EllipticTheta[ 2, 0, q] EllipticTheta[ 2, Pi/4, q^(9/2)] / (EllipticTheta[ 4, 0, q^3] EllipticTheta[ 2, Pi/4, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^6 + A)^2 * eta(x^9 + A) * eta(x^36 + A) / (eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^12 + A) * eta(x^18 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 11 2008
STATUS
approved