[go: up one dir, main page]

login
A139000
a(n) = discriminant of n-th Bell polynomial.
0
0, 1, 1, 5, 257, 227081, 5180893281, 4280906663314189, 171185545597850136406017, 426885502327596067385688208587793, 83152665259106642682190066734067859360190625, 1549180370826247785860196691818235616463808908569519107349
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
EXAMPLE
a(4) = 257 because discriminant of the 4th Bell polynomial x + 7 x^2 + 6 x^3 + x^4 is 257.
MAPLE
seq(discrim(BellB(n, x), x), n = 0..12); # Peter Luschny, Oct 08 2023
MATHEMATICA
Table[Discriminant[BellB[n, x], x], {n, 0, 10}] (* Vaclav Kotesovec, Oct 08 2023 *)
PROG
(PARI) a(n) = poldisc(Pol(vector(n+1, k, stirling(n, k, 2)))); \\ Michel Marcus, Oct 07 2023
CROSSREFS
Cf. A106800.
Sequence in context: A055386 A216849 A201606 * A061959 A002554 A003383
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 05 2008
EXTENSIONS
Offset set to 0 by Peter Luschny, Oct 08 2023
STATUS
approved