OFFSET
0,2
COMMENTS
a(n) < A000522(2^n) for n > 0; see Sondow and Schalm, Proposition A.13 part (ii).
REFERENCES
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..9
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, arXiv:0709.0671 [math.NT], 2007-2009.
EXAMPLE
MATHEMATICA
a522[n_] := E Gamma[n + 1, 1];
(* b = A127014 *)
b[1] = 1; b[n_] := b[n] = For[k = b[n - 1], True, k++, If[Mod[a522[k], 2^n] == 0, Return[k]]];
a[0] = 1; a[n_] := a522[b[n]];
Table[a[n], {n, 0, 6}] (* Jean-François Alcover, Feb 20 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Apr 01 2008
STATUS
approved