[go: up one dir, main page]

login
A138366
Count of post-period decimal digits up to which the rounded n-th convergent to exp(1) agrees with the exact value.
7
0, 1, 0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 12, 12, 13, 14, 16, 15, 16, 19, 18, 20, 22, 22, 24, 25, 25, 26, 27, 28, 30, 32, 32, 32, 35, 36, 36, 39, 39, 41, 43, 43, 44, 46, 46, 48, 50, 50, 52, 52, 54, 56, 57, 58, 59, 61, 61, 63, 65, 64, 67, 69, 69, 71, 72, 73, 74, 77, 77, 79, 80, 81, 83
OFFSET
1,5
COMMENTS
This is a measure of the quality of the n-th convergent to E = A001113 if the convergent and the exact value are compared rounded to an increasing number of digits.
The sequence of rounded values of exp(1) is 3, 2.7, 2.72, 2.718, 2.7183, 2.71828, 2.718282, 2.7182818 etc, and the n-th convergent (provided by A007676 and A007677) is to be represented by its equivalent sequence.
a(n) represents the maximum number of post-period digits of the two sequences if compared at the same level of rounding. Counting only post-period digits (which is one less than the full number of decimal digits) is just a convention taken from A084407.
EXAMPLE
For n=6, the 6th convergent is 106/39 = 2.7179487.., with a sequence of rounded representations 3, 2.7, 2.72, 2.718, 2.7179, 2.71795, 2.717949, etc.
Rounded to 1, 2, or 3 post-period decimal digits, this is the same as the rounded version of the exact E, but disagrees if both are rounded to 4 decimal digits, where 2.7183 <> 2.7179.
So a(6) = 3 (digits), the maximum rounding level of agreement.
KEYWORD
nonn,base
AUTHOR
Artur Jasinski, Mar 17 2008
EXTENSIONS
Definition and values replaced as defined via continued fractions by R. J. Mathar, Oct 01 2009
STATUS
approved