OFFSET
0,3
REFERENCES
Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965 page 273.
A. Messiah, Quantum Mechanics, vol. 2, p. 712, North Holland, 1969.
LINKS
G. C. Greubel, Rows n = 0..30 of the irregular triangle, flattened
FORMULA
Define Sum_{n >= 0} p(x, n) * t^n/n! = exp(x*t)/(x - t/2 - t/(exp(t) - 1)) then T(n, k) = coefficients of ( (n+1)!*(x-1)^(n+1) )*( n!*p(x, n) ).
Sum_{k=0..2*n+1} T(n, k) = 0^n = A000007(n). - G. C. Greubel, Apr 01 2021
EXAMPLE
Irregular triangle begins as:
1;
0, -2, 2;
-1, 1, 6, -12, 6;
0, 12, -24, -12, 72, -72, 24;
24, -52, -88, 356, -240, -360, 720, -480, 120;
0, -720, 2280, -1320, -3720, 6360, -1200, -6000, 7200, -3600, 720;
MATHEMATICA
Table[CoefficientList[(n+1)!*n!*SeriesCoefficient[Series[(x-1)^(n+1)*Exp[x*t]/(x - t*Coth[t/2]/2), {t, 0, 30}], n], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Apr 01 2021 *)
CROSSREFS
KEYWORD
tabf,sign
AUTHOR
Roger L. Bagula, May 04 2008
EXTENSIONS
Edited by G. C. Greubel, Apr 01 2021
STATUS
approved