[go: up one dir, main page]

login
A138165
Prime numbers that contain each of the digits 0,1,4,6,8,9 exactly once.
2
104869, 108649, 140689, 140869, 148609, 164089, 164809, 168409, 184609, 186049, 401689, 406981, 408169, 408691, 409861, 416089, 418069, 460189, 460891, 460981, 468019, 468109, 469801, 480169, 486091, 489061, 498061, 601849, 604189, 604819
OFFSET
1,1
COMMENTS
There are 66 terms. Each product 2*3*5*7*a(n) is a squarefree number whose prime factorization (ignoring exponents) contains exactly one of each decimal digit, so each product is a term of A058909. (The primes 2,3,5,7 are the only single-digit primes in base 10.)
LINKS
Rick L. Shepherd, Table of n, a(n) for n = 1..66 (full sequence)
MATHEMATICA
Select[Prime[Range[10000, 50000]], SequenceCount[DigitCount[#], {1, _, _, 1, _, 1, _, 1, 1, 1}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 07 2020 *)
CROSSREFS
Cf. A058909.
Sequence in context: A174293 A186877 A304283 * A202934 A203822 A013889
KEYWORD
base,easy,fini,full,nonn
AUTHOR
Rick L. Shepherd, Mar 03 2008
STATUS
approved