[go: up one dir, main page]

login
A136652
L.g.f.: A(x) = log( Sum_{n>=0} 2^[n(n-1)/2]*x^n ).
3
1, 3, 19, 223, 4771, 190023, 14441659, 2130394591, 616038609331, 351153716973303, 395928966997611499, 885010943452285951183, 3928049212346654960720611, 34658088824057172975437120103, 608435145369338712372672919898779, 21266998855813018955669706360248449471
OFFSET
1,2
LINKS
EXAMPLE
L.g.f.: A(x) = x + 3*x^2/2 + 19*x^3/3 + 223*x^4/4 + 4771*x^5/5 +...
A(x) = log(1 + x + 2x^2 + 8x^3 + 64x^4 + 1024x^5 +...+ 2^(n(n-1)/2)*x^n +...).
MATHEMATICA
max = 14; s = Log[Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}]] + O[x]^(max+1); CoefficientList[s, x]*Range[0, max] // Rest (* Jean-François Alcover, Sep 03 2017 *)
PROG
(PARI) a(n)=n*polcoeff(log(sum(k=0, n, 2^(k*(k-1)/2)*x^k +x*O(x^n))), n)
CROSSREFS
Sequence in context: A271587 A217906 A166380 * A136504 A003111 A160888
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 15 2008
STATUS
approved