[go: up one dir, main page]

login
A135881
Column 0 of triangle A135880.
12
1, 1, 2, 6, 25, 138, 970, 8390, 86796, 1049546, 14563135, 228448504, 4002300038, 77523038603, 1646131568618, 38043008887356, 950967024783228, 25573831547118764, 736404945614783668, 22611026430036582671
OFFSET
0,3
COMMENTS
Amazingly, this sequence also equals column 0 of tables A135878 and A135879, which have unusual recurrences seemingly unrelated to triangle A135880.
LINKS
EXAMPLE
Equals column 0 of triangle P=A135880:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1;
8390, 16220, 8057, 2171, 400, 57, 7, 1; ...
where column k of P^2 equals column 0 of P^(2k+2)
such that column 0 of P^2 equals this sequence shift left.
Also equals column 0 of irregular triangle A135879:
1;
1,1;
2,2,1,1;
6,6,4,4,2,2,1;
25,25,19,19,13,13,9,5,5,3,1,1;
138,138,113,113,88,88,69,50,50,37,24,24,15,10,5,5,2,1; ...
which has a recurrence similar to that of triangle A135877
which generates the double factorials.
PROG
(PARI) /* Generated as column 0 in triangle A135880: */ {a(n)=local(P=Mat(1), R, PShR); if(n==0, 1, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); R=P*PShR; R=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, R[r, c], if(c==1, (P^2)[ #P, 1], (P^(2*c-1))[r-c+1, 1])))); P=matrix(#R, #R, r, c, if(r>=c, if(r<#R, P[r, c], (R^c)[r-c+1, 1])))); P[n+1, 1])}
(PARI) /* Generated as column 0 in triangle A135879 (faster): */ {a(n)=local(A=[1], B); if(n>0, for(i=1, n, m=1; B=[]; for(j=1, #A, if(j+m-1==floor((m+2)^2/4)-1, m+=1; B=concat(B, 0)); B=concat(B, A[ j])); A=Vec(Polrev(Vec(Pol(B)/(1-x+O(x^#B))))))); A[1]}
CROSSREFS
Cf. A135880, A135879, A135878; other columns: A135882, A135883, A135884.
Sequence in context: A084784 A255841 A197772 * A007815 A195259 A292748
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 15 2007
EXTENSIONS
Typo in entries (false comma) corrected by N. J. A. Sloane, Jan 23 2008
STATUS
approved