OFFSET
0,4
COMMENTS
FORMULA
EXAMPLE
Square array begins:
(1),(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,(1),1,1,1,1,(1),...;
(1),(2),3,(4),5,(6),7,8,(9),10,11,(12),13,14,15,(16),17,18,19,(20),...;
(3),(8),15,(23),33,(44),57,71,(86),103,121,(140),161,183,206,(230),..;
(15),(48),105,(176),279,(400),561,744,(950),1206,1489,(1800),2171,..;
(105),(384),945,(1689),2895,(4384),6555,9129,(12139),16161,20763,..;
(945),(3840),10395,(19524),35685,(56448),89055,129072,(177331),245778,...;
(10395),(46080),135135,(264207),509985,(836352),1381905,2071215,(2924172),.;
(135135),(645120),2027025,(4098240),8294895,(14026752),24137505,...; ...
where terms in parenthesis are removed before taking partial sums.
For example, to generate row 2 from row 1, remove terms at positions
{[(m+2)^2/4-1], m>=0} = [0,1,3,5,8,11,15,19,24,29,35,...] to obtain:
[3, 5, 7,8, 10,11, 13,14,15, 17,18,19, 21,22,23,24, 25,26,27,28, ...]
then take partial sums to get row 2:
[3, 8, 15,23, 33,44, 57,71,86, 103,121,140, 161,183,206,230, ...].
Repeating this process will generate all the rows of the triangle,
where column 0 will be the odd double factorials (A001147)
and column 1 will be the even double factorials (A000165).
PROG
(PARI) {T(n, k)=local(A=0, b=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==floor((b+2)^2/4)-1, b+=1, A+=T(n-1, c); d+=1); c+=1)); A}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 14 2007
STATUS
approved