[go: up one dir, main page]

login
A133558
a(n) = a(n-1) + 9*a(n-2) for n >= 2, a(0)=1, a(1)=2.
4
1, 2, 11, 29, 128, 389, 1541, 5042, 18911, 64289, 234488, 813089, 2923481, 10241282, 36552611, 128724149, 457697648, 1616214989, 5735493821, 20281428722, 71900873111, 254433731609, 901541589608, 3191445174089, 11305319480561
OFFSET
0,2
FORMULA
G.f.: (1+x)/(1-x-9*x^2).
a(n) = Sum_{k=0..n+1} A122950(n+1,k)*8^(n+1-k). - Philippe Deléham, Jan 08 2008
MAPLE
a:=n->(<<0|1>, <9|1>>^n. <<1, 2>>)[1, 1]: seq(a(n), n=0..25); # Muniru A Asiru, Aug 04 2018
MATHEMATICA
LinearRecurrence[{1, 9}, {1, 2}, 30] (* or *) CoefficientList[Series[ (1+x)/(1-x-9x^2), {x, 0, 30}], x] (* Harvey P. Dale, Apr 21 2011 *)
PROG
(GAP) a:=[1, 2]: for n in [3..510] do a[n]:=a[n-1]+9*a[n-2]; od; a; # Muniru A Asiru, Aug 04 2018
CROSSREFS
Sequence in context: A086252 A106926 A220095 * A285812 A140745 A356567
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Jan 03 2008
STATUS
approved