[go: up one dir, main page]

login
A132438
Number of different values of i^2+j^2+k^2+l^2+m^2+n^2 for i,j,k,l,m,n in [0,n].
1
1, 7, 22, 47, 82, 124, 183, 250, 326, 414, 513, 621, 749, 874, 1018, 1176, 1338, 1515, 1706, 1899, 2110, 2331, 2568, 2806, 3066, 3324, 3612, 3903, 4201, 4513, 4841, 5173, 5523, 5882, 6248, 6626, 7026, 7433, 7842, 8271, 8715
OFFSET
0,2
COMMENTS
Number of distinct sums of 6 squares of integers from 0 through n.
EXAMPLE
a(1) = 7 because the 7 distinct sums of squares from 0 through 1 are permutations of 1^2 + 1^1 + 1^2 + 1^2 + 1^2 + 1^2 = 6; 1^1 + 1^2 + 1^2 + 1^2 + 1^2 + 0^2 = 5; 1^1 + 1^2 + 1^2 + 1^2 + 0^2 + 0^2 = 4; 1^1 + 1^2 + 1^2 + 0^2 + 0^2 + 0^2 = 3; 1^1 + 1^2 + 0^2 + 0^2 + 0^2 + 0^2 = 2; 1^1 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 = 1; 0^2 + 0^1 + 0^2 + 0^2 + 0^2 + 0^2 = 0.
MATHEMATICA
Table[Length@ Union@Flatten@ Table[i^2 + j^2 + k^2 + l^2 + m^2 + n^2, {i, 0, p}, {j, i, p}, {k, j, p}, {l, k, p}, {m, l, p}, {n, m, p}], {p, 0, 40}]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 13 2007, Nov 14 2007
EXTENSIONS
Offset corrected by Giovanni Resta, Jun 19 2016
STATUS
approved