OFFSET
0,1
FORMULA
Equals lim inf_{n->oo} Product_{k=0..floor(log_5(n))} floor(n/5^k)*5^k/n.
Equals lim inf_{n->oo} A132029(n)/n^(1+floor(log_5(n)))*5^(1/2*(1+floor(log_5(n)))*floor(log_5(n))).
Equals (1/2)*exp(-Sum_{n>0} 5^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals Product_{n>=0} (1 - 1/A020729(n)). - Amiram Eldar, May 08 2023
EXAMPLE
0.438796837203638531...
MATHEMATICA
digits = 103; NProduct[1-1/(2*5^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
RealDigits[QPochhammer[1/2, 1/5], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Hieronymus Fischer, Aug 14 2007
STATUS
approved