[go: up one dir, main page]

login
Expansion of f(x, x^2) * f(x^4, x^12) in powers of x where f(, ) is Ramanujan's general theta function.
11

%I #13 Mar 12 2021 22:24:44

%S 1,1,1,0,1,2,1,1,0,1,0,1,2,1,1,1,1,1,0,2,0,0,1,0,2,1,3,1,0,1,1,1,0,0,

%T 1,1,1,0,1,2,2,1,1,0,1,1,1,2,0,0,1,1,2,0,0,2,0,1,0,1,1,2,2,1,1,1,1,1,

%U 0,1,1,0,1,0,1,3,0,1,0,0,1,2,2,0,1,1,2

%N Expansion of f(x, x^2) * f(x^4, x^12) in powers of x where f(, ) is Ramanujan's general theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A131963/b131963.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of psi(x^4) * phi(-x^3) / chi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

%F Expansion of q^(-13/24) * eta(q^2) * eta(q^3)^2 * eta(q^8)^2 / (eta(q) * eta(q^4) * eta(q^6)) in powers of q.

%F Euler transform of period 24 sequence [ 1, 0, -1, 1, 1, -1, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, -1, 1, 1, -1, 0, 1, -2, ...].

%F a(25*n + 13) = a(n). a(25*n + 3) = a(25*n + 8) = a(25*n + 18) = a(25*n + 23) = 0.

%F 2 * a(n) = A123484(24*n + 13).

%e G.f. = 1 + x + x^2 + x^4 + 2*x^5 + x^6 + x^7 + x^9 + x^11 + 2*x^12 + x^13 + ...

%e G.f. = q^13 + q^37 + q^61 + q^109 + 2*q^133 + q^157 + q^181 + q^229 + q^277 + ...

%t a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 13}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* _Michael Somos_, Nov 04 2015 *)

%t a[ n_] := SeriesCoefficient[(1/2) x^(-1/2) EllipticTheta[ 4, 0, x^3] QPochhammer[ -x, x] EllipticTheta[ 2, 0, x^2], {x, 0, n}]; (* _Michael Somos_, Nov 04 2015 *)

%o (PARI) {a(n) = if( n<0, 0, n = 24*n + 13; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

%Y Cf. A123484.

%K nonn

%O 0,6

%A _Michael Somos_, Aug 02 2007