%I #25 Sep 07 2020 06:30:46
%S 2,8,8,5,3,9,0,0,8,1,7,7,7,9,2,6,8,1,4,7,1,9,8,4,9,3,6,2,0,0,3,7,8,4,
%T 2,7,4,8,5,3,2,9,1,9,0,8,3,0,5,9,7,1,8,6,8,2,7,0,8,9,8,8,1,3,8,6,2,2,
%U 1,8,4,3,8,3,6,2,3,7,0,1,5,9,7,7,1,0,5,3,2,4,5,7,8,7,0,1,2,6,8,8,9,9,3,9,9
%N Decimal expansion of 2/log(2).
%H Itai Benjamini, Ariel Yadin and Ofer Zeitouni, <a href="https://arxiv.org/abs/0707.3888">Maximal Arithmetic Progressions in Random Subsets</a>, arXiv:0707.3888 [math.PR], 2007-2012.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F 2/log(2) = 1/log(32) = 1/(5*log(2)). - _Alonso del Arte_, Feb 01 2015
%F 2/log(2) = 1/arctanh(1/3). - _Luc Rousseau_, Sep 07 2020
%e 2/log(2) = 2.885390081777926814719849362...
%t RealDigits[2/Log[2], 10, 128][[1]] (* _Alonso del Arte_, Feb 01 2015 *)
%o (PARI) 2/log(2) \\ _Charles R Greathouse IV_, Feb 02 2015
%Y Cf. A002162.
%K cons,easy,nonn
%O 1,1
%A _Jonathan Vos Post_, Jul 28 2007