[go: up one dir, main page]

login
A131792
Main diagonal of triangle A131791: a(n) = A131791(n,n) for n>=0.
1
1, 1, 2, 6, 21, 76, 280, 1045, 3936, 14925, 56892, 217791, 836706, 3224157, 12456225, 48232162, 187131664, 727309265, 2831193004, 11036424667, 43076087806, 168322335246, 658416150496, 2577945422410, 10102468839284, 39621592646545
OFFSET
0,3
COMMENTS
Row n of triangle A131791 has 2^n terms for n>=0, where row sums and central terms of A131791 equals A028361: Product_{i=0..n-1} (2^i + 1).
FORMULA
a(n) = [x^n] Product_{j=0..n-1} [ (1 - x^(2^j+1) ) / (1-x) ] for n>0, with a(0)=1. - Max Alekseyev, Aug 30 2007.
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(prod(j=0, n-1, (1-x^(2^j+1))/(1-x)+x*O(x^n)), n))} - Max Alekseyev, Aug 30 2007.
(PARI) {T(n, k)=if(n==0, 1, polcoeff(prod(j=0, n-1, (1-x^min(2^j+1, k+1))/(1-x)+x*O(x^k)), k))} - Martin Fuller, Aug 31 2007
CROSSREFS
Sequence in context: A279560 A116821 A116772 * A144904 A376791 A151287
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 15 2007
EXTENSIONS
More terms from Max Alekseyev, Aug 30 2007.
STATUS
approved