[go: up one dir, main page]

login
A131644
a(n) = 2^(a(n-1)) mod n.
4
0, 1, 2, 0, 1, 2, 4, 0, 1, 2, 4, 4, 3, 8, 1, 2, 4, 16, 5, 12, 1, 2, 4, 16, 11, 20, 4, 16, 25, 2, 4, 16, 31, 26, 4, 16, 9, 18, 25, 32, 37, 2, 4, 16, 16, 32, 42, 16, 23, 8, 1, 2, 4, 16, 31, 16, 43, 56, 15, 8, 12, 4, 16, 0, 1, 2, 4, 16, 55, 58, 29, 32, 32, 44, 16, 24, 71, 20, 9, 32, 49, 20, 37
OFFSET
1,3
COMMENTS
All positive integers seem to occur somewhere in this sequence (a proof would be nice!).
The first occurrence of 6 is at a(59474).
The first occurrence of 33 is at a(2514233).
a(A192362(n)) = n and a(m) <> n for m < A192362(n). - Reinhard Zumkeller, Jun 30 2011
The first occurrence of 75 is at a(8654593). - Reinhard Zumkeller, Jan 30 2015
LINKS
N. J. A. Sloane and T. D. Noe, Table of n, a(n) for n = 1..60000 (the first 1000 terms from T. D. Noe)
FORMULA
a(n) = 2^(a(n-1)) mod n, a(1) = 0
EXAMPLE
a(11) = 4, so a(12) = 2^a(11) mod 12 = 16 mod 12 = 4.
MATHEMATICA
Transpose[NestList[{Mod[2^First[#], Last[#]+1], Last[#]+1}&, {0, 1}, 95]][[1]] (* Harvey P. Dale, Apr 17 2011 *)
Join[{s=0}, Table[s = PowerMod[2, s, n], {n, 2, 100}]] (* T. D. Noe, Apr 17 2011 *)
PROG
(Haskell)
import Math.NumberTheory.Moduli (powerMod)
a131644 n = a131644_list !! (n-1)
a131644_list = map fst $ iterate f (0, 2) where
f (v, w) = (powerMod 2 v w, w + 1)
-- Reinhard Zumkeller, Jan 30 2015
CROSSREFS
For records see A241582, A241583, also A192362.
Sequence in context: A304784 A375487 A354665 * A115346 A140531 A117316
KEYWORD
easy,nonn,nice
AUTHOR
Jon Ayres (jonathan.ayres(AT)ntlworld.com), Sep 08 2007
STATUS
approved