[go: up one dir, main page]

login
A131524
Number of possible palindromic rows (or columns) in an n X n crossword puzzle.
7
0, 0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 33, 33, 54, 54, 88, 88, 143, 143, 232, 232, 376, 376, 609, 609, 986, 986, 1596, 1596, 2583, 2583, 4180, 4180, 6764, 6764, 10945, 10945, 17710, 17710, 28656, 28656, 46367, 46367, 75024, 75024, 121392, 121392
OFFSET
1,5
COMMENTS
To be an acceptable row, there must be at least one run of white squares and all runs of white squares must be of length at least three. Palindromic rows are of interest since if n is odd, the middle row of an n x n crossword puzzle must be palindromic if the puzzle is to have to usual rotational symmetry. Rather than use the explicit formula above, it is perhaps easier to observe that for all m, a(2m) = a(2m-1) and thus both the subsequences of odd-numbered terms and even-numbered terms are Fibonacci numbers - 1. (see A000071)
FORMULA
a(n+4) = a(n+2) + a(n) + 1, a(1) = a(2) = 0, a(3) = a(4) = 1.
a(n) = (2^(-n/2) (-5*2^(n/2)*(-1 + sqrt(5))^(3/2) + sqrt(5)*(1 + sqrt(5))^(n/2) (-sqrt(2)*(-1 + (-1)^n) + (1 + (-1)^n) sqrt(-1 + sqrt(5))) + 2 (-1 + sqrt(5))^(n/2) (sqrt(-55 + 25 sqrt(5)) cos(n Pi)/2 + sqrt(2) (-5 + 2 sqrt(5)) sin(n Pi)/2))))/(5 (-1 + sqrt(5))^(3/2)).
O.g.f.: x^3/((1-x)*(1-x^2-x^4)). - R. J. Mathar, Dec 05 2007
a(2*n) = Fibonacci(n+1) - 1, a(2*n+1) = Fibonacci(n+2) - 1. - G. C. Greubel, Jul 13 2019
EXAMPLE
a(9) = 7 because the palindromic rows, using 0's for white squares and 1's for black, are: 000000000, 100000001, 110000011, 111000111, 000010000, 000111000, 100010001
MATHEMATICA
With[{F=Fibonacci}, Table[If[Mod[n, 2]==0, F[(n+2)/2] -1, F[(n+3)/2] -1], {n, 60}]] (* G. C. Greubel, Jul 13 2019 *)
PROG
(Haskell)
import Data.List (transpose)
a131524 n = a131524_list !! (n-1)
a131524_list = concat $ transpose [tail a000071_list, tail a000071_list]
-- Reinhard Zumkeller, May 23 2013
(PARI) vector(60, n, f=fibonacci; if(n%2==0, f((n+2)/2)-1, f((n+3)/2)-1)) \\ G. C. Greubel, Jul 13 2019
(Magma) F:=Fibonacci; [(n mod 2) eq 0 select F(floor((n+2)/2))-1 else F(Floor((n+3)/2))-1: n in [1..60]]; // G. C. Greubel, Jul 13 2019
(Sage)
def a(n):
if (n%2==0): return fibonacci((n+2)/2) -1
else: return fibonacci((n+3)/2) -1
[a(n) for n in (1..60)] # G. C. Greubel, Jul 13 2019
(GAP)
a:= function(n)
if n mod 2=0 then return Fibonacci(Int((n+2)/2)) -1;
else return Fibonacci(Int((n+3)/2)) -1;
fi;
end;
List([1..60], n-> a(n) ); # G. C. Greubel, Jul 13 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Marc Brodie (mbrodie(AT)wju.edu), Aug 24 2007
EXTENSIONS
More terms from Robert G. Wilson v, Aug 28 2007
STATUS
approved