[go: up one dir, main page]

login
A131385
Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').
10
1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
OFFSET
0,3
COMMENTS
From R. J. Mathar, Dec 05 2012: (Start)
a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).
The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).
In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).
(End)
a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - Dennis P. Walsh, Nov 13 2015
FORMULA
a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = 2 * exp( Sum_{n>=1} log((n+1)/n)) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
Compare L to Alladi-Grinstead constant defined by A085291 and A085361.
(End)
a(n) = A308820(n)/A092143(n-1) for n > 0. - Ridouane Oudra, Sep 28 2024
EXAMPLE
From Paul D. Hanna, Nov 26 2012: (Start)
Illustrate initial terms using formula involving the floor function []:
a(1) = 1;
a(2) = [2/1] = 2;
a(3) = [3/1]*[4/2] = 6;
a(4) = [4/1]*[5/2]*[6/3] = 16;
a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;
a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.
Illustrate another alternative generating method:
a(1) = 1;
a(2) = (2/1)^[1/1] = 2;
a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;
a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;
a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.
(End)
For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - Dennis P. Walsh, Nov 13 2015
MAPLE
a:= n-> mul(ceil(n/k), k=1..n):
seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
MATHEMATICA
Table[Product[Ceiling[n/k], {k, n}], {n, 25}] (* Harvey P. Dale, Sep 18 2011 *)
PROG
(PARI) a(n)=prod(k=1, n-1, floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
(PARI) a(n)=prod(k=1, n-1, ((k+1)/k)^floor((n-1)/k))
for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 01 2013
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Hieronymus Fischer, Jul 08 2007
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023
STATUS
approved