[go: up one dir, main page]

login
A131306
Smallest prime ending with exactly n identical digits.
1
2, 11, 1777, 23333, 199999, 2999999, 19999999, 577777777, 1777777777, 23333333333, 311111111111, 2111111111111, 17777777777777, 499999999999999, 1333333333333333, 23333333333333333
OFFSET
1,1
COMMENTS
By Dirichlet's theorem, there is a prime for each n. For the n in A004023, the smallest prime consists of all ones. - T. D. Noe, Oct 01 2007
EXAMPLE
a(4)=23333 because 23333 is the smallest prime ending with exactly 4 identical digits.
MATHEMATICA
sp[n_]:=Module[{k=1}, While[!PrimeQ[k*10^IntegerLength[n]+n], k++]; k*10^IntegerLength[n]+n]; Join[{2, 11}, Table[Min[sp/@FromDigits/@ Table[PadRight[{}, i, n], {n, {1, 3, 7, 9}}]], {i, 3, 20}]] (* Harvey P. Dale, Aug 28 2016 *)
CROSSREFS
Sequence in context: A051254 A095820 A101295 * A145797 A284739 A246518
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, Sep 29 2007
STATUS
approved