[go: up one dir, main page]

login
A130863
Ratio of quadruple Sum of k^2-1 to quadruple sum of k made into an integer sequence: (1/6)*(-1 + n)(2 + n)(3 + n)(7 + n).
0
0, 30, 100, 231, 448, 780, 1260, 1925, 2816, 3978, 5460, 7315, 9600, 12376, 15708, 19665, 24320, 29750, 36036, 43263, 51520, 60900, 71500, 83421, 96768, 111650, 128180, 146475, 166656, 188848
OFFSET
1,2
COMMENTS
Double sum ratio is: A055998
FORMULA
a(n) =1/2)*(n + 2)*(n + 3)*(n + 4)*Sum[Sum[Sum[Sum[k^2 - 1, {k, 1, m}], {m, 1, j}], {j, 1, l}], {l, 1, n}]/Sum[Sum[Sum[Sum[k, {k, 1, m}], {m, 1, j}], { j, 1, l}], {l, 1, n}]=(1/6)*(-1 + n)(2 + n)(3 + n)(7 + n)
G.f.: x^2*(-30+50*x-31*x^2+7*x^3)/(-1+x)^5. - R. J. Mathar, Nov 14 2007
MATHEMATICA
h[n_] = (1/2)*(n + 2)*(n + 3)*(n + 4)*Sum[Sum[Sum[Sum[k^2 - 1, {k, 1, m}], {m, 1, j}], {j, 1, l}], {l, 1, n}]/Sum[Sum[Sum[Sum[k, {k, 1, m}], {m, 1, j}], {j, 1, l}], {l, 1, n}]; Table[h[n], {n, 1, 30}]
CROSSREFS
Cf. A055998.
Sequence in context: A002758 A346855 A187401 * A070114 A070132 A280911
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 22 2007
STATUS
approved