[go: up one dir, main page]

login
A130286
Strongly-single primes: primes p such that neither previousprime(p) nor nextprime(p) is a twin prime.
2
83, 89, 127, 163, 167, 257, 331, 359, 367, 373, 379, 383, 389, 397, 401, 443, 449, 479, 487, 491, 499, 503, 547, 557, 587, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977
OFFSET
1,1
LINKS
MATHEMATICA
PrimeNext[n_]:=Module[{k}, k=n+1; While[ !PrimeQ[k], k++ ]; k]; PrimePrev[n_]:=Module[{k}, k=n-1; While[ !PrimeQ[k], k-- ]; k]; lst={}; Do[p=Prime[n]; If[ !PrimeQ[p-2]&&!PrimeQ[PrimePrev[p]-2]&&!PrimeQ[p+2]&&!PrimeQ[PrimeNext[p]+2], AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
PROG
(Magma) f:=func<p|NextPrime(p)>; g:=func<p|PreviousPrime(p)>; [p: p in PrimesInInterval(5, 1000)| not IsPrime(f(p)-2) and not IsPrime(g(p)+2) and not IsPrime(f(f(p))-2) and not IsPrime(g(g(p))+2)]; // Marius A. Burtea, Jan 02 2020
CROSSREFS
Cf. A000040 (primes), A001097 (twin primes), A007510 (single primes), A071904 (odd composite numbers).
Sequence in context: A031961 A108751 A256520 * A372042 A226380 A062677
KEYWORD
nonn
AUTHOR
Zak Seidov, Aug 06 2007
EXTENSIONS
Some terms corrected by Vladimir Joseph Stephan Orlovsky, Jul 21 2009
STATUS
approved