OFFSET
0,1
COMMENTS
REFERENCES
K. Bobek, Einleitung in die Theorie der elliptischen Funktionen, Teubner Leipzig, 1884, p. 101.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f. Sum_{k>=0} a(k)*q^(2*k + 1) = theta2(q)^4 = theta3(q)^4 - theta4(q)^4.
Expansion of 16 * psi(x)^4 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jun 11 2007
Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in odd integers. - Michael Somos, Jun 11 2007
G.f.: 16 * (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Jun 11 2007
EXAMPLE
G.f. = 16 + 64*x + 96*x^2 + 128*x^3 + 208*x^4 + 192*x^5 + 224*x^6 + ...
G.f. = 16*q + 64*q^3 + 96*x^5 + 128*q^7 + 208*q^9 + 192*q^11 + 224*q^13 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[q^(-1/2)*EllipticTheta[2, 0, q^(1/2)]^4, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 15 2018 *)
CoefficientList[Series[x^(-1/2)*EllipticTheta[2, 0, x^(1/2)]^4, {x, 0, 50}], x] (* Vaclav Kotesovec, Apr 16 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, 16 * sigma(2*n + 1))}; /* Michael Somos, Jun 11 2007 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 30 2007
STATUS
approved