[go: up one dir, main page]

login
A128663
Expansion of eta(q^3) * eta(q^33) / ( eta(q)* eta(q^11)) in powers of q.
3
1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 28, 37, 46, 59, 74, 94, 115, 144, 176, 218, 265, 326, 393, 479, 574, 695, 830, 996, 1184, 1414, 1673, 1988, 2344, 2770, 3254, 3828, 4482, 5252, 6126, 7153, 8318, 9678, 11222, 13018, 15050, 17405, 20068, 23145, 26621
OFFSET
1,3
LINKS
FORMULA
Euler transform of period 33 sequence [ 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (1 + 3 * u*v) - (u+v) * (u^2 - 3 * u*v + v^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = v - u^3 + 3 * u*v * (2*u + (1+v) * (1 + 3*u*v)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (33 t)) = 1/3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226009.
G.f.: x * Product_{k>0} (1 - x^(3*k)) * (1 - x^(33*k)) / ( (1 - x^k) * (1 - x^(11*k))).
Convolution inverse of A226009.
a(n) ~ exp(4*Pi*sqrt(n/33)) / (sqrt(2) * 3^(5/4) * 11^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
q + q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 5*q^6 + 7*q^7 + 9*q^8 + 13*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3] QPochhammer[ q^33] / (QPochhammer[ q] QPochhammer[ q^11]), {q, 0, n}]
nmax = 40; Rest[CoefficientList[Series[x * Product[(1 - x^(3*k)) * (1 - x^(33*k)) / ( (1 - x^k) * (1 - x^(11*k))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^33 + A) / (eta(x + A) * eta(x^11 + A)), n))}
CROSSREFS
Cf. A226009.
Sequence in context: A058661 A094362 A000726 * A206557 A240508 A174068
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 19 2007
STATUS
approved