[go: up one dir, main page]

login
A128195
a(n) = (2*n + 1)*(a(n - 1) + 2^n) for n >= 1, a(0) = 1.
5
1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527, 3313030741, 69573667065, 1600194389599, 40004859842375, 1080131215965309, 31323805263469097, 971037963168557815, 32044252784564570583, 1121548847459764557925, 41497307356011298342553, 1618394986884440655806799
OFFSET
0,2
FORMULA
a(n) = A126062(2, n), double variations.
a(n) = (2n+1)!/(n! 2^n) Sum(k=0..n, 4^k*k!/(2k)!) [Gottfried Helms]
a(n) = 2^n (2n+1) Sum(k=0..n, Gamma(n+1/2)/Gamma(k+1/2))
a(n) = 2^(n+1) Gamma(n+3/2) Sum(k=0..n, 1/Gamma(k+1/2))
a(n) = A128196(n)*A005408(n)
a(n) = A128196(n+1)-A000079(n+1)
Recursive form:
a(n) = 2^(n+1)*v(n+1/2) with v(x) = if x <= 1 then x else x(v(x-1)+1).
a(n) = (2n+1)*(a(n-1)+2^n), a(0) = 1 [Wolfgang Thumser]
Note: The following constants will be used in the next formulas.
K = (1-exp(1)*Gamma(1/2,1))/Gamma(1/2)
M = sqrt(2)(1+exp(1)(Gamma(1/2)-Gamma(1/2,1)))
Generalized form: For x>0
a(x) = 2^(x+1)(x+1/2)(exp(1) Gamma(x+1/2,1) + K Gamma(x+1/2))
Asymptotic formula:
a(n) ~ 2^(n+5/2)*Gamma(n+3/2)
a(n) ~ (exp(1)+K)*2^(n+1)*(n+1/2)!
a(n) ~ M(2n+1)(2exp(-1)(n-1/(24*n+19/10*1/n)))^n
MAPLE
a := n -> `if`(n=0, 1, (2*n+1)*(a(n-1)+2^n));
MATHEMATICA
a[0] = 1; a[n_] := a[n] = (2*n+1)*(a[n-1] + 2^n); Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jul 29 2013 *)
CROSSREFS
Cf. A007526 (The number of variations), A128196 (A weighted sum of double factorials), A126062.
Sequence in context: A036731 A020234 A154996 * A103459 A339688 A100311
KEYWORD
easy,nonn
AUTHOR
Peter Luschny, Feb 26 2007
STATUS
approved