OFFSET
0,5
COMMENTS
LINKS
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
G.f.: (1+z-t*z)/(1+z-t*z+z^2-t*z^2-z*C(1+z-t*z)), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan g.f. (see A000108).
Or, g.f.: (1+(1-t)*z)*C/(1+(1-t)*z*(1+z*C)).
EXAMPLE
T(4,1)=2 because we have UDUDUUDD and UUDDUDUD; T(4,3)=1 because we have UDUDUDUD.
Triangle starts:
1;
1;
1,1;
4,0,1;
11,2,0,1;
33,6,2,0,1;
105,17,7,2,0,1;
MAPLE
G:=(1+z-t*z)/(1+z-t*z+z^2-t*z^2-z*C*(1+z-t*z)): C:=(1-sqrt(1-4*z))/2/z: Gser:=simplify(series(G, z=0, 16)): for n from 0 to 13 do P[n]:=sort(coeff(Gser, z, n)) od: 1; for n from 1 to 13 do seq(coeff(P[n], t, j), j=0..n-1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 27 2007
EXTENSIONS
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar
STATUS
approved