[go: up one dir, main page]

login
A127153
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having k UDUD's starting at level 0; here U=(1,1), D=(1,-1) (0<=k<=n-1).
1
1, 1, 1, 1, 4, 0, 1, 11, 2, 0, 1, 33, 6, 2, 0, 1, 105, 17, 7, 2, 0, 1, 343, 56, 19, 8, 2, 0, 1, 1148, 185, 64, 21, 9, 2, 0, 1, 3916, 624, 214, 72, 23, 10, 2, 0, 1, 13563, 2144, 726, 244, 80, 25, 11, 2, 0, 1, 47571, 7468, 2510, 832, 275, 88, 27, 12, 2, 0, 1, 168625, 26317
OFFSET
0,5
COMMENTS
Row 0 has one entry; row n has n entries (n>=1). Row sums yield the Catalan numbers (A000108). Column 0 yields A127154. The reference does not list the 0's (p. 2920, lines 3,4).
LINKS
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
G.f.: (1+z-t*z)/(1+z-t*z+z^2-t*z^2-z*C(1+z-t*z)), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan g.f. (see A000108).
Or, g.f.: (1+(1-t)*z)*C/(1+(1-t)*z*(1+z*C)).
EXAMPLE
T(4,1)=2 because we have UDUDUUDD and UUDDUDUD; T(4,3)=1 because we have UDUDUDUD.
Triangle starts:
1;
1;
1,1;
4,0,1;
11,2,0,1;
33,6,2,0,1;
105,17,7,2,0,1;
MAPLE
G:=(1+z-t*z)/(1+z-t*z+z^2-t*z^2-z*C*(1+z-t*z)): C:=(1-sqrt(1-4*z))/2/z: Gser:=simplify(series(G, z=0, 16)): for n from 0 to 13 do P[n]:=sort(coeff(Gser, z, n)) od: 1; for n from 1 to 13 do seq(coeff(P[n], t, j), j=0..n-1) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A121301 A059056 A344393 * A178979 A228270 A335748
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 27 2007
EXTENSIONS
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar
STATUS
approved