[go: up one dir, main page]

login
A126274
Partial sum of A005915.
5
1, 15, 72, 220, 525, 1071, 1960, 3312, 5265, 7975, 11616, 16380, 22477, 30135, 39600, 51136, 65025, 81567, 101080, 123900, 150381, 180895, 215832, 255600, 300625, 351351, 408240, 471772, 542445, 620775, 707296, 802560, 907137, 1021615
OFFSET
0,2
FORMULA
a(n) = Sum_{i=0..n} (i + 1)*(3*i^2 + 3*i + 1).
a(n) = (3*n^4 + 6*n^3 + 3*n^2)/4 + 2*n^3 + 5*n^2 + 4*n + 1.
a(n) = (1/4)*(n + 1)^2*(n + 2)*(3*n + 2). - N-E. Fahssi, May 03 2008
G.f.: (1 + 10 x + 7 x^2)/(1 - x)^5. - N-E. Fahssi, May 03 2008
a(n) = (n+1)*A000578(n+1) - Sum_{i=0..n} A000578(i). - Bruno Berselli, Apr 24 2010
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} max(i,j,k). - Enrique PĂ©rez Herrero, Feb 26 2013
a(n) = A000217(n+1)*A000326(n+1). - Bruno Berselli, Dec 13 2013
E.g.f.: (3*x^4 + 32*x^3 + 86*x^2 + 56*x + 4)*exp(x)/4. - G. C. Greubel, Oct 23 2018
MAPLE
seq(coeff(series((1+10*x+7*x^2)/(1-x)^5, x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 24 2018
MATHEMATICA
Table[(3*n^4 + 14*n^3 + 23*n^2 + 16*n + 4)/4, {n, 0, 10}] (* G. C. Greubel, Oct 23 2018 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 15, 72, 220, 525}, 40] (* Harvey P. Dale, Mar 31 2022 *)
PROG
(Magma) [1/4*(n + 1)^2*(n + 2)*(3*n + 2): n in [0..30]]; // Vincenzo Librandi, May 16 2011
(PARI) vector(30, n, n--; (3*n^4+14*n^3+23*n^2+16*n+4)/4) \\ G. C. Greubel, Oct 23 2018
(GAP) List([0..35], n->(1/4)*(n+1)^2*(n+2)*(3*n+2)); # Muniru A Asiru, Oct 24 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Mar 09 2007
EXTENSIONS
Corrected and extended by Vincenzo Librandi, May 16 2011
STATUS
approved