OFFSET
0,6
COMMENTS
A partition is (k,2)-noncrossing if it avoids the pattern 12...k12.
LINKS
Toufik Mansour and Simone Severini, Enumeration of (k,2)-noncrossing partitions, Discrete Math., 308 (2008), 4570-4577.
EXAMPLE
Table begins:
k\n| 0 1 2 3 4 5 6 7 8 9 10 11 12
2| 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012
3| 1 1 2 5 15 51 188 731 2950 12235 51822 223191 974427
4| 1 1 2 5 15 52 202 856 3868 18313 89711 450825 2310453
5| 1 1 2 5 15 52 203 876 4112 20679 109853 608996 3488806
6| 1 1 2 5 15 52 203 877 4139 21111 115219 666388 4045991
MATHEMATICA
b[j_, j_] := 1;
b[i_, j_] := j x Product[s x - 1, {s, i + 1, j - 1}];
y[k_] := (1 - (k - 2) x - Sqrt[(1 - k x)^2 - 4 x^2]) / (2 x (1 - (k - 2) x));
s[k_, op_] := Sum[(-1)^(i + j) op[x, i] b[i, j], {j, 0, k - 2}, {i, 0, j}];
p[k_] := (x^(k - 1) y[k]/(1 - x y[k]) + s[k, Power]) / (1 - s[k, Times]);
t[n_, k_] := SeriesCoefficient[p[k], {x, 0, n}];
Print@Flatten@Table[t[n, ad - n + 2], {ad, 0, 10}, {n, 0, ad}]
(* Andrey Zabolotskiy, Sep 14 2021 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Jonathan Vos Post, Dec 10 2006
EXTENSIONS
Offset corrected by Joerg Arndt, Apr 18 2014
More terms from Andrey Zabolotskiy, Sep 14 2021
STATUS
approved