OFFSET
1,1
COMMENTS
Conjecture: for every odd (prime or nonprime) number x>=1 that is not a multiple of 5 there exists a prime p such that p = z + x; where z is a multiple of 10.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
The first and second odd composite number not divisible by 5 are 9 and 21, thus 19 = 10 + 9 and 31 = 10 + 21 are the first and second term of the sequence.
MATHEMATICA
Module[{nn=300, oddcomps, z}, oddcomps=Select[Range[3, nn, 2], !PrimeQ[#] && !Divisible[#, 5]&]; Table[z=10; While[!PrimeQ[z+oddcomps[[n]]], z=z+10]; z+oddcomps[[n]], {n, Length[oddcomps]}]] (* Harvey P. Dale, Oct 01 2013 *)
PROG
(PARI) {m=280; for(x=2, m, if(x%2!=0&&x%5!=0&&!isprime(x), z=10; while(z<10^5&&!isprime(a=z+x), z+=10); print1(if(z<10^5, a, 0), ", ")))} - Klaus Brockhaus, Jan 24 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Tomas Xordan, Jan 11 2007
EXTENSIONS
Edited by Klaus Brockhaus, Jan 24 2007
STATUS
approved