[go: up one dir, main page]

login
A125111
Cubes which do not have a partition as the sum of 2 squares.
2
27, 216, 343, 1331, 1728, 2744, 3375, 6859, 9261, 10648, 12167, 13824, 19683, 21952, 27000, 29791, 35937, 42875, 54872, 59319, 74088, 79507, 85184, 97336, 103823, 110592, 132651, 157464, 166375, 175616, 185193, 205379, 216000, 238328, 250047
OFFSET
1,1
LINKS
FORMULA
Equals A000578 INTERSECT A022544. - R. J. Mathar, Nov 23 2006
a(n) = A022544(n)^3. - Ray Chandler, Nov 23 2006
MATHEMATICA
Select[Range[0, 65]^3, SquaresR[2, # ] == 0 &] (* Ray Chandler, Nov 23 2006 *)
PROG
(PARI) isA125111(ncube)={ local(a) ; a=0; while(a^2<=ncube, if(issquare(ncube-a^2), return(0) ; ) ; a++ ; ) ; return(1) ; } { for(n=0, 200, if(isA125111(n^3), print1(n^3, ", ") ; ) ; ) ; } - R. J. Mathar, Nov 23 2006
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Nov 21 2006
EXTENSIONS
More terms from R. J. Mathar and Ray Chandler, Nov 23 2006
STATUS
approved